
appliness(

#1 - APRIL 2012

INTERVIEW

MAXIMILIANO FIRTMAN, THE
MOBILE WEB GODFATHER

TUTORIALS

HTML5, PHONEGAP, BACK-
BONE.JS, jQUERY MOBILE...

Ph
ot

og
ra

p
hy

 b
y

Fr
an

k
D

er
as

The digital
magazine
for web app
DEVELOPERS

appliness(PREVIEW

This is a PDF preview of Appliness, a
digital magazine for web application

developers.

Download Appliness on your iPad or
your Android tablet to enjoy the best
reading experience (interactive sam-

ples, links, videos...).

If you want to contribute to appliness
writing articles or showcasing your apps,
visit our website (www.appliness.com)

and contact us.

www.appliness.com

appliness(
THE FIRST DIGITAL MAGAZINE FOR WEB APPLICATION DEVELOPERS

Welcome to appliness
by Michaël Chaize

Welcome to appliness, the first digital magazine for web application
developers. Today, developers can use web standards (HTML, JS, and

CSS) to build cross-platform applications for desktop, mobile, and tablet
devices. The contributors to appliness are all professional developers who
have vast experience in developing such applications and are eager to

share with you their favorite techniques, the tools they use most, and the libraries and frameworks they
like to employ. In addition, the magazine will also highlight some of today’s most talented developers.
In this issue, you’ll discover cool interactive tutorials, videos, articles about market trends, and links to
practical information for web developers. We hope that you enjoy reading this magazine, and we en-
courage you to help us continue to improve it by providing feedback on appliness.com.

TABLE OF CONTENTS

DON’T WORRY, BE APPLI

Backbone.js Wine Cellar
Tutorial: Getting Started
Christophe Coenraets details the benefits of
using Backbone.js, a lightweight framework to
structure your JavaScript code.

GETTING STARTED WITH
JQUERY MOBILE
Discover how to code your first web mobile
application with the open-source framework
JQuery Mobile.

CANVAS QUIRKS
While using Canvas 2D context for drawing
stuff, Mihai Corlan discovered that the drawing
line API can surprise you a bit especially when
drawing horizontal or vertical lines.

HOW I DEBUG JAVASCRIPT?
Ray Camden describes his methodology to
debug Javascript code.

MOBILE WEB & PHONEGAP
HTML WEB TIPS
Here are a few tips that Andy Trice has found
useful for improving overall interaction and
mobile HTML experiences.

WHAT IS PHONEGAP?
Greg Wilson introduces this open-source frame-
work to build mobile native apps with web stan-
dards.

VIDEO

HTML5 FOR DEVELOPERS:
PHPSTORM/WEBSTORM
Quick review of PHPStorm and WEBStorm IDEs by
Piotr.

BLEEDING EDGE

Bleeding Edge HTML5,
WebRTC & Device Access
Andrew plays with the new WebRTC features that
should be soon available in our browsers.

SHOWCASE

TOP MOBILE APPLICATIONS
A selection of great mobile applications developed
with web standards and PhoneGap.

CODE

WTFJS ?!*$
JavaScript is a language we love despite it giving us
so much to hate.

INTERVIEW

MAXIMILIANO FIRTMAN, THE
GODFATHER OF THE MOBILE
WEB
Interview of the author of “Programming the
Mobile Web” (O’Reilly).

TRENDS

WHAT EXACTLY IS APACHE?
Alan Greeblatt details the core values of the Apache
Foundation Software and the impact on technolo-
gies such as Flex or PhoneGap.

NEWS

HELTER SKELTER NEWS
Brian Rinaldi selects for us the most innovative ar-
ticles about JavaScript and HTML.

TEAM

Who’s BEHIND THIS
MAGAZINE
Presentation of the contributors and links to great
online resources.

NAVIGATION GUIDE
READ												 NAVIGATE

MOVE TO THE NEXT
ARTICLE BY A
HORIZONTAL SWIPE

READ THROUGH THE
ARTICLE BY A
VERTICAL SWIPE

GO BACK TO THE LIBRARY

MOVE TO THE PREVIOUS
ARTICLE

DISPLAY THE TABLE OF
CONTENTS

VISUALLY BROWSE ALL
THE ARTICLES

appliness(DON’T WORRY, BE APPLI

Backbone.js Wine Cellar Tutorial -
Part 1: Getting Started
by Christophe Coenraets

One of the challenges when building nontrivial Web applications is that Ja-
vaScript’s non-directive nature can initially lead to a lack of structure in your

code, or in other words, a lack of… backbone. JavaScript is often written as a
litany of free-hanging and unrelated blocks of code, and it doesn’t take long be-

fore it becomes hard to make sense of the logic and organization of your own code.

Backbone.js is a lightweight framework that addresses this issue by adding structure to JavaScript-heavy
Web applications.

Self-contained building blocks

Backbone.js provides several classes (Model, Collection, View, Router) that you can extend to define the
building blocks of your application. To build an app with Backbone.js, you first create the Models, Collec-
tions, and Views of your application. You then bring these components to life by defining a “Router” that
provides the entry points of your application through a set of (deep-linkable) URLs.

With Backbone.js, your code is organized in self-contained entities (Models, Collections, Views): No more
free-hanging and unrelated blocks of code.

Data Binding

With Backbone.js, you bind Views to Models so that when a Model’s data changes, all the Views bound to
that Model automatically re-render. No more complex UI synchronization code.

Elegant REST Integration

Backbone.js also provides a natural / magical / elegant integration with RESTful services. If your back-end
data is exposed through a pure RESTful API, retrieving (GET), creating (POST), updating (PUT), and deleting
(DELETE) models is incredibly easy using the Backbone.js simple Model API.

Sample Application

In this three-part tutorial, you’ll create a Wine Cellar application. You can browse through a list of wines, as
well as add, update, and delete wines.

•	 In Part 1 (this post), you define the basic infrastructure. You create a “read-only” version of the applica-
tion: you’ll be able to retrieve a list of wine and get the details of each wine.

•	 In Part 2, you add the code to add, update and delete wines. You leverage Backbone’s powerful REST
integration.

•	 In Part 3, you add complete support for history management and deep linking.

NOTE: I also blogged a non-Backbone version of the application here (Java back-end) and here (PHP back-
end), which you can look at for comparison.
Here is a screenshot of the final application.

ABOUT THIS ARTICLE

Christophe Coenraets is a Technical Evange-
list for Adobe where he focuses on Mobile
and Rich Internet Applications for the En-
terprise. In his previous role at Macromedia,
Christophe worked on JRun, the company’s
J2EE application server.
http://coenraets.org/

 @ccoenraets

Backbone.js official website
http://documentcloud.github.com/backbone/

Wine Cellar application source files
https://github.com/ccoenraets/backbone-cellar

Slim framework
http://www.slimframework.com/

ONLINE RESOURCES

Part 1: The Read-Only Wine Cellar Application

You can run the application (Part 1) here.

Here is the code:

1 // Models
2 window.Wine = Backbone.Model.extend();
3
4 window.WineCollection = Backbone.Collection.extend({
5 model:Wine,
6 url:”../api/wines”
7 });
8
9 // Views
10 window.WineListView = Backbone.View.extend({
11
12 tagName:’ul’,
13
14 initialize:function () {
15 this.model.bind(“reset”, this.render, this);
16 },
17
18 render:function (eventName) {
19 _.each(this.model.models, function (wine) {
20 $(this.el).append(new WineListItemView({model:wine}).render().el);
21 }, this);
22 return this;
23 }
24
25 });
26
27 window.WineListItemView = Backbone.View.extend({
28
29 tagName:”li”,
30
31 template:_.template($(‘#tpl-wine-list-item’).html()),
32
33 render:function (eventName) {
34 $(this.el).html(this.template(this.model.toJSON()));
35 return this;
36 }
37
38 });
39
40 window.WineView = Backbone.View.extend({
41
42 template:_.template($(‘#tpl-wine-details’).html()),
43
44 render:function (eventName) {
45 $(this.el).html(this.template(this.model.toJSON()));
46 return this;
47 }
48
49 });
50
51 // Router
52 var AppRouter = Backbone.Router.extend({
53
54 routes:{
55 “”:”list”,
56 “wines/:id”:”wineDetails”
57 },
58
59 list:function () {
60 this.wineList = new WineCollection();
61 this.wineListView = new WineListView({model:this.wineList});
62 this.wineList.fetch();
63 $(‘#sidebar’).html(this.wineListView.render().el);
64 },
65
66 wineDetails:function (id) {
67 this.wine = this.wineList.get(id);
68 this.wineView = new WineView({model:this.wine});
69 $(‘#content’).html(this.wineView.render().el);
70 }
71 });
72
73 var app = new AppRouter();
74 Backbone.history.start();

Code highlights:

1.	WineModel (line 2): Notice that we don’t need to explicitly define the attributes (name, country, year, etc).
You could add validation, default values, etc. More on that in Part 2.

2.	WineCollection (lines 4 to 7): “model” indicates the nature of the collection. “url” provides the endpoint
for the RESTFul API. This is all that’s needed to retrieve, create, update, and delete wines with Backbone’s
simple Model API.

3.	WineListView (lines 10 to 25): The render() function iterates through the collection, instantiates a WineLis-
tItemView for each wine in the collection, and adds it to the wineList.

4.	WineListItemView (lines 27 to 38): The render() function merges the model data into the “wine-list-item”
template (defined in index.html). By defining a separate View for list items, you will make it easy to update
(re-render) a specific list item when the backing model changes without re-rendering the entire list. More
on that in Part 2.

5.	WineView (lines 40 to 49): The view responsible for displaying the wine details in the Wine form. The ren-
der() function merges the model data (a specific wine) into the “wine-details” template retrieved from in-
dex.html.

6.	AppRouter (lines 52 to 71): Provides the entry points for the application through a set of (deep-linkable)
URLs. Two routes are defined: The default route (“”) displays the list of wine. The “wines/:id” route displays
the details of a specific wine in the wine form. Note that in Part 1, this route is not deep-linkable. You have
to start the application with the default route and then select a specific wine. In Part 3, you will make sure
you can deep-link to a specific wine.

Download

The source code for this application is hosted on GitHub here. And here is a quick link to the download.

You will need the RESTful services to run this application. A PHP version (using the Slim framework) is available
as part of the download.

UPDATE (1/11/2012): A version of this application with a Java back-end (using JAX-RS and Jersey) is also avail-
able on GitHub here. You can find more information on the Java version of this application here.

Part 2 is available on Christophe’s blog here.

appliness(DON’T WORRY, BE APPLI

Getting started with jQuery
Mobile
by Michaël Chaize

loading the application

(you need to be online to view this sample)

The creation of jQuery Mobile was spurred by the need among web devel-
opers to create mobile websites. Before jQuery Mobile came along, jQuery

was already a widely-used JavaScript library that simplified the development of
engaging experiences on the web with HTML. I believe that jQuery Mobile has

a great future because it targets multiple mobile operating systems, including iOS, Android, BlackBerry,
and Bada, and because it’s very easy to learn.

In this article, I’ll show you how to build a simple mobile web application using jQuery Mobile, and then
I’ll explain how to convert this mobile application into a native application using PhoneGap.

STEP 1 - Include references

The image you see below of a phone on the
screen is not a screenshot. You can touch the
screen of this phone and play with the applica-
tion. As you can see, on the first screen, there is
a custom header with the appliness logo, a pic-
ture I took in Seoul, a list, and a footer. The list is
fed by an external XML file. If you tap an item in
the list, you’ll see the second screen of the app
(page 2). A back button in the header lets you go
back to the home page.

To get started building this web application,
you’ll need to import two JavaScript libraries
and a CSS file in your HTML page. jQuery.com
hosts these files so you can just add these refer-
ences in the HEAD section of your HTML page:

<link rel=”stylesheet” href=”http://code.
jquery.com/mobile/1.0.1/jquery.mobile-
1.0.1.min.css” />
<script src=”http://code.jquery.com/jque-
ry-1.6.4.min.js”></script>
<script src=”http://code.jquery.com/mo-
bile/1.0.1/jquery.mobile-1.0.1.min.js”></
script>

These references are links to the CDN versions
hosted by jQuery. You can also choose to
download the files from jQueryMobile.com and
use them locally. If you take this approach, be
sure to check jQueryMobile.com regularly to
make sure you are using the most up-to-date
versions of these files.

ABOUT THIS ARTICLE

Michaël Chaize is a Developer Evangelist at
Adobe where he focuses on Rich Internet
Application and Mobile applications. Based
in Paris, he works with large accounts that
need to understand the benefits of rich user
interfaces. He’s the editor in chief of Appli-
ness.
http://riagora.com/

 @mchaize

JQuery Mobile official website
http://jquerymobile.com/

PhoneGap official website
http://www.phonegap.com

Using JQuery mobile themes
http://www.adobe.com/fr/devnet/dreamweaver/articles/theme-
control-jquery-mobile.html

GET THE SOURCE CODE

http://appliness.com/code/01.zip

ONLINE RESOURCES

STEP 2 - Set up the structure of a jQuery Mobile page

Jquery Mobile expects you to declare the sections of your pages (or screens) using the <DIV> tag and
the data-role attribute. You may be wondering why the new <HEADER> and <FOOTER> tags introduced
with HTML5 are not used. It’s simply to ensure compatibility with older smartphones. Basically, you start
by declaring a DIV tag that will represent the page: <div data-role=”page”>. Inside a page, you can
declare a header (<div data-role=”header”>), the div tag that will host the content of a page (<div data-
role=”content”>), and a footer. I’m not a fan of the word “page” in this context, because in the end,
you’re really creating an application with screens not pages. Here is the HTML code of application shown
on the mobile device to the side:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<link rel=”stylesheet” href=”http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.
css” />
<link rel=”stylesheet” type=”text/css” href=”./css/site.css”>
<script src=”http://code.jquery.com/jquery-1.6.4.min.js”></script>
<script src=”http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js”></script>

<meta name=”viewport” content=”width=device-width; user-scalable=no;” />
<title>JQM tutorial</title>
</head>

<body>
<div data-role=”page” class=”ui-page”>

	 <div data-role=”header” class=”ui-header”>
		 <h1> My title </h1>
	 </div>

	 <div data-role=”content”>	
		 <div class=”image-win”>
 	 <p>

 <h2>Welcome to appliness</h2>
		 </p>
 </div>

 <div class=”list-questions”>
 <ul data-role=”listview” id=”listQuestions”>
 </div>
 	 </div>
 	 <div data-role=”footer”>
 <h3>Thanks - appliness.com<h3/>
		 </div>
</div>

</body>
</html>

STEP 3 - Add a custom header

By default, jQuery Mobile uses attractive styles. You can, of course, change the appearance of the applica-
tion and create your own unique experiences. In this section, you’ll see how to create a custom header that
displays the appliness logo on a custom background image.

Unless you change it, the header DIV tag uses the ui-header styles defined in the default jQuery Mobile
CSS file. To use a custom header, you can simply replace the title of the page with an tag. You can
also extend the properties of the default ui-header style by creating your own CSS file (site.css in this ex-
ample). Here is the code used to create the custom header:

 In the main HTML file, reference a custom css file and decare the image:
<head>

...
<link rel=”stylesheet” type=”text/css” href=”./css/site.css”>
...
</head>
<body>
...
<div data-role=”page” class=”ui-page”>

	 <div data-role=”header” class=”ui-header”>
		 <div class=”image-header”></div>
	 </div>
...

 In your CSS file, extend the styles of the default ui-header class.

.ui-header{
	 background-image:url(../assets/header-bg.png);
	 background-position:0 0px;
	 background-repeat:repeat;
	 height:40px;
}

STEP 4 - Get some data and feed the list

Now you’re ready to use jQuery to launch an asynchronous HTTP request and consume some XML data.
In this example, I’m using a local XML file, but the code would be the same if you were using a hosted
PHP script that output some XML—you’d just need to update the URL.

When the document is ready (that is, when your application is loaded), you can use JavaScript code to
access the XML file and consume the result. In the code below, notice the HTML list component, ,
with the id listQuestions. Thanks to jQuery, you can easily reference this list (or any other) in the DOM of
the page and append items as you are parsing the content of the XML file. At the end of the loop, you
just need to call the refresh method on the list to display the result. Also, jQuery Mobile will automatically
apply a theme to your list. If you add the attribute data-filter=”true” to your element, then jQuery
will add a Filter text input field and some logic to filter your results.

 This is the HTML code to declare the list with the filtering option:

<div class=”list-questions”>
	 <ul data-role=”listview” data-filter=”true” id=”listQuestions”>
</div>

 And here is the JavaScript code to get the XLM data and feed the list:

<script type=”text/javascript”>

$(document).ready(function()
{
 $.ajax({
 type: “GET”,
 url: “data/questions.xml”,
 dataType: “xml”,
 success: function(xml){

 $(xml).find(“question”).each(function()
 {
 var titleQuestion = $(this).find(‘title’).text();
 $(‘#listQuestions’).append(‘’+titleQuestion+’</
li>’);
 console.log(titleQuestion);
 });
		 $(‘#listQuestions’).listview(“refresh”);
 }
 });
});

</script>

STEP 5 - Load a new page and add navigation

You can declare several pages in a single jQuery Mobile document (one HTML file). I don’t care for this
approach and in the sample application I’ve created a separate HTML page named page2.html. To load
this page, just add a link using the classic tag. Using AJAX, jQuery Mobile will load the page
in a single-page model. It will add your page to the DOM, initialize all the parts (“widget”) of this new
page, and launch a transition to it. On the new page, to display a back button (which is a mandatory UI
design pattern in an iOS mobile application), just add an anchor/link in the header of your jQuery Mobile
page and add the attribute data-rel=”back”. You can also add data-direction=”reverse” to reverse the
transition to the previous page. Here is the code of the second page, page2.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<title>Page 2</title>
<link rel=”stylesheet” type=”text/css” href=”./css/site.css”>
</head>

<body class=”ui-mobile-viewport”>

<div id=”cameraPage” data-role=”page”>

	 <div data-role=”header” class=”ui-header”>
 Back
		 <h1>Page 2</h1>
	 </div>
	 <div class=”section-image”>

 Welcome to page 2 !!!
 </div>
</div>
</body>
</html>

STEP 6 - Convert from a web app to a native app

Using PhoneGap, a free and open source technology, you can now take this mobile web application and
transform it as a native application targeting seven mobile platforms, including iOS, Android, Windows
Mobile, and BlackBerry. If you don’t want to install the PhoneGap tools on your computer, you can try the
(currently free) cloud service at build.phonegap.com, where you can upload your zipped jQuery mobile
project and have this hosted service automatically generate your native mobile applications. Later, you
can explore the PhoneGap APIs and extend the capabilities of your application with geolocation, the
vibration API, the camera, and so on. Together, jQuery Mobile and PhoneGap are a fantastic combina-
tion for building cross-platform mobile applications. These are very easy-to-learn and fun frameworks. I
encourage you to download the source code for this tutorial and see how easy it is to start building your
own amazing mobile apps using web standards.

appliness(DON’T WORRY, BE APPLI

How I debug JavaScript
by Raymond Camden

After helping a friend earlier this week with a JavaScript issue, I thought I’d
quickly write up the normal ways I attack issues with JavaScript. This is not

meant to be a definitive guide per se, but just how I go about dealing with
problems. I’ll be talking about Chrome, but pretty much everything mentioned
below is doable in other browsers (some even in IE).

ABOUT THIS ARTICLE

Meet Raymond Camden. He is a 38 year old
married father of three living in beautiful La-
fayette, Louisiana. Ray is a developer evan-
gelist for Adobe where his primary technical
focus is ColdFusion, jQuery, Flex, AIR and
the mobile space.

http://raymondcamden.com/
 @cfjedimaster

Chrome Extensions - Debugging tutorial
http://code.google.com/chrome/extensions/tut_debugging.html

Firebug for Firefox
http://getfirebug.com/

HTML5 development
http://www.adobe.com/devnet/html5.html

ONLINE RESOURCES

Check for Errors in the Console

First and foremost, I check the console. Normally errors are not shown to users. Consider the follow ex-
ample:

<script>
 var x = 1;
 var y = 2;
 var z = x+y2;
</script>

If I open this up in my browser, I’ll see nothing wrong. Obviously if the page tried to display Z, I’d see noth-
ing or something unexpected. But there isn’t a large error alert, flashing lights, or klaxons. But as soon as I
open the console I see:

You can even click the line and see the context - which would be real useful in a large file.

What isn’t obvious in this screen shot is that Chrome will also highlight the line. Not sure why they fade it
out after a few seconds, but it does make it even more obvious.

Check for Errors in the Network Panel

The other big one is the network panel. This shows all network activity and is useful in two ways. One error
I see all the time (and this was the error my friend had), was simply not noticing that a library didn’t load.
This could be because of a web server permission issue or simply forgetting to upload a file! Consider:

<script src=”http://2code.jquery.com/jquery-1.6.4.min.js”></script>
<script>
$(document).ready(function() {
 console.log(“moo”);
});
</script>

Notice the bad URL for the jQuery load? In the Network tab, this shows up right away (note, it also cre-
ates an error in the console since I tried to use it, but if I was not using jQuery right away, this wouldn’t be
obvious):

Notice that the Network panel let’s you filter. That’s recommended if you have a lot of stuff going on, but,
you probably want to check everything first. For example, you may be using jQuery UI. If you forget to
upload the CSS, things will definitely be wonky, but that wouldn’t show up as a missing JavaScript library.

The other big thing to look for here is in the XHR requests area. XHR requests represent your Ajax requests.
A full look into this is a bit much for this blog entry, but basically, if you are making an Ajax request for
data, you want to check your network request to see what the server returned. Did the server throw an er-
ror? Did it return data in a way you didn’t expect? Did your result include formatting? For example, many
people will wrap all their requests in a template. While this works great for the rest of the site, including
a template around your JSON data will break any code that tries to parse it. Don’t forget to look at the
complete response. You may have whitespace after your JSON that is a bit off screen. You can also right
click on an XHR request and open it in a new window to make it clearer.

Finally - one more thing you want to pay attention to is size. If your application is working, but working
slowly, look at how big those XHR requests are. Ajax isn’t magic. If you return 100K of JSON data it’s still
going to take time for that data to transfer to the client.

Event Handlers/Selector

This is mainly jQuery based, but could apply anywhere. Another thing I check is my event handlers and
jQuery selectors. For example, consider:

$(“#mything”).on(“click”, function() { });

If I notice that my click handler isn’t running, I check to ensure that #mything is actually matching some-
thing in the DOM. In my startup routine I may do something like so:

console.dir($(“#mything”));

If I see that jQuery couldn’t find it, then I look into my DOM and see what’s up. It could be as simple as a
typo.

The Debugger

And finally, if all all fails, I try out the debugger. Again, this is a bit too much to cover in detail in this blog
post, and, I’m very new to this myself, but the debugger let’s you set breakpoints and step through your
code. If that doesn’t quite make sense to you, consider this - you can pause your JavaScript application and
freeze it in time. You can look at variables and their state. You can then have your application proceed one
line at a time. It’s like God Mode for the browser. Consider:

<script>
var total=0;
for (var i = 0; i < 10; i++) {
 total+=i;
}
</script>

In Chrome, I added a breakpoint on total+=i, and then added a watch expression (i.e., ‘watch this variable’)
for total. I stepped through the loop a few times and was able to watch the variable increase:

appliness(DON’T WORRY, BE APPLI

Canvas quirks
by Mihai Corlan

ABOUT THIS ARTICLE

Mihai Corlan has been working for Adobe
since 2006. Since 2008 he has been work-
ing as a developer evangelist for Adobe.
His current role is worldwide web devel-
oper evangelist. This means he writes
code, he writes articles, and he speaks.
http://corlan.org/

 @mcorlan

Mihai’s blog
http://www.corlan.org

HTML5 and canvas
http://www.html5canvastutorials.com/

Learn to use HTML5 canvas
http://www.adobe.com/devnet/html5/html5-canvas.html

GET THE SOURCE CODE

http://appliness.com/code/01.zip

ONLINE RESOURCES

While using Canvas 2D context for drawing stuff, I discovered that the draw-
ing line API can surprise you a bit, especially when drawing horizontal or

vertical lines. Here is a live preview on your tablet with a Canvas element and 5
lines drawn using lineTo() calls. Click on the HTML button:

In case you haven’t noticed, let me tell you what’s wrong with this: the lines are suposed to be 1 pixel
width and black. Clearly what you see on the screen is not 1 pixel and the lines are somehow grayish. It
looks more like 2 pixels. The code for drawing this looks like this:

<input onclick=”draw()” type=”button” value=”draw” />

<script type=”text/javascript”>
function draw() {
 var context, i, y;

 context = document.getElementById(‘canvas’).getContext(‘2d’);
 y = 20;
 context.lineWidth = 1;
 context.strokeStyle = ‘#000000’;
 for (i = 0; i < 5; i++) {
 context.moveTo(0, y);
 context.lineTo(450, y);
 y += 10;
 }
 context.stroke();
}
</script>

Let’s change the line width to 2 - context.lineWidth = 2 - and check the result:

Interesting, isn’t it? So the lines width is basically the same, but the color now is really black. Now, let’s
try something else: change the line width back to 1 and adjust the y property of the moveTo/lineTo func-
tions with 0.5 (line 13/14):

context.moveTo(0, y + 0.5);
context.lineTo(450, y + 0.5);

And surprise, the lines are now exactly 1 pixel and black:

So what’s happening? After some research I think that this is what is happening:
- When you use integer coordinates, like 10 or 15, the drawing algorithm is actually trying to draw a
line in between two pixels (for example between the 9th and 10th pixels). As a result, it will actually
draw two lines.
- I think the line is slightly lighter than the color set because of the antialiasing algorithm.
- When you offset the coordinates by 0.5 then you “end” up with drawing the line exactly on one
pixel.
- If you draw a 1 pixel vertical line from (0,0) to (0,200) you will see that this time the line is exactly
one pixel wide but the issue of lighter than defined color remains. As there is no other pixel to the left
of the 0 pixel on the X axis on the screen you will see only one line.

Using fillRect() function instead of lineTo()

If you don’t like adding those 0.5 to any coordinate when using the lineTo() API then you can actually use
the drawing rectangle API. As you probably already guessed, the trick is to draw a rectangle of one pixel
for one dimension and the length you need for the other one. So here is the script for drawing 5 horizon-
tal lines:

function draw() {
 var context, i, y;

 context = document.getElementById(‘canvas’).getContext(‘2d’);
 y = 20;

 for (i = 0; i < 5; i++) {
 context.fillRect(0, 10 + y, 450, 1);
 y += 10;
 }
}

And here is the result:

If you are wondering about performance differences between lineTo() and fillRect() then you shouldn’t.
fillRect() is probably even faster than lineTo().

appliness(DON’T WORRY, BE APPLI

Mobile Web & PhoneGap Dev Tips
by Andy Trice

Recently I’ve been spending a fair amount of time working on HTML-based ap-
plications – both mobile web and mobile applications using PhoneGap. Re-

gardless of whether you are targeting a mobile web browser or a mobile app using
the PhoneGap container, you are still targeting a mobile web browser instance. If
you haven’t noticed, mobile web browsers can often have peculiarities with how
content is rendered, or how you interact with that content. This happens regard-
less of platform – iOS, Android, BlackBerry, etc… All have quirks. Here are a few

tips that I have found useful for improving overall interaction and mobile HTML experiences.

Disclaimer: I’ve been targeting iOS and Android primarily, with BlackBerry support on some
applications. I don’t have a Windows Phone device to test with, so I can’t comment on support
for the Windows platform.

Autocorrect and AutoCapitalize

First things first: autocorrect and autocapitalize on Apple’s iOS can sometimes drive you to the brink of in-
sanity. This is especially the case if you have a text input where you are typing in a username, and it keeps
“correcting” it for you (next thing you know, you are locked out of the app). You can disable these features
in web experiences by setting the “autocorrect” and “autocapitalize” attributes of an <input> instance.

Disabled AutoCorrect

<input type=”text” autocorrect=”off”
autocapitalize=”on”>

Disabled AutoCapitalize

<input type=”text” autocorrect=”on”
autocapitalize=”off”>

ABOUT THIS ARTICLE

Andy Trice is a Technical Evangelist
for Adobe Systems. Andrew brings to
the table more than a decade of ex-
perience designing, implementing,
and delivering rich applications for the
web, desktop, and mobile devices.

http://tricedesigns.com/
 @andytrice

HTML5rocks.com website
http://www.html5rocks.com

PhoneGap official website
http://www.phonegap.com

Mobile and Tablet development
http://www.adobe.com/devnet/devices.html

GET THE SOURCE CODE

http://appliness.com/code/01.zip

ONLINE RESOURCES

Managing the Keyboard

Have you ever experienced an app or web site on a mobile device where you have to enter numeric data,
and the default keyboard pops up. Before entering any text, you have you switch to the numeric input. Re-
peat that for 100 form inputs, and try to tell me that you aren’t frustrated… Luckily, you can manage the
keyboard in mobile HTML experiences very easily using HTML5 Form elements.

Default Keyboard:

<input style=”width: 400px;” type=”text” value=”default”>

Numeric Keyboard:

<input style=”width: 400px;” type=”number” value=”numeric”>

Numeric Keyboard:

<input style=”width: 400px;” type=”text” pattern=”[0-9]*”
value=”numeric”>

Phone Keyboard:

<input style=”width: 400px;” type=”tel” value=”telephone”>

URL Keyboard:

<input style=”width: 400px;” type=”url” value=”url”>

Email Keyboard:

<input style=”width: 400px;” type=”email” value=”email”>

Disable User Selection

One way to easily determine that an application is really HTML is that everything on the UI is selectable and
can be copied/pasted – Every single piece of text, every image, every link, etc… Not only is this annoying
in some scenarios (and very useful in others), but there may be instances where you explicitly don’t want the
user to be able to easily copy/paste content. You can disable user selection by applying the following CSS
styles. Note: This works on iOS, and partially works on BlackBerry/QNX for the PlayBook. It did not work on
Android in my testing.

<style>
* {
-webkit-touch-callout: none;
-webkit-user-select: none;
}

</style>

The -webkit-touch-callout css rule disables the callout, and the -webkit-user-select rule disables the ability
to select content within an element. More details on webkit css rules from the Mobile Safari CSS Reference.
More detail about disabling copy/paste on iOS is available at StackOverflow.com.

Disable Zoom

If you want your content to feel like an app instead of a web page, then I strongly suggest that you disable
gestures for pinch/zoom and panning for all use cases where pinch/zoom is not required. The easiest way to
do this is to set the viewport size to device-width and and disable user scaling through the HTML metadata
tag.

<meta name=”viewport” content=”width=device-width, user-scalable=no”/>

You can read further detail on the viewport metadata tag from the Apple Safari HTML Reference, or the

Mozilla reference.

On a Phone? Integrate With It

Your application can dial phone numbers very easily. Just use a standard web location, but use the
“tel:<phonenumber>” URI format. Test it with Apple Customer Support: 800-275-2273

800-275-2273<a/>

This technique works on both Android and iOS devices, and I assume other platforms. However, I don’t

have the devices to test all of them.

Touch Based Scrolling

Touch-based scrolling is critical to having an application that feels native. I dont mean that the whole page
should be able to scroll… Your browser will be able to take care of that alone. Instead I mean that you should
be able to scroll individual elements so that they mimic clipped views, lists, or large blocks of content. You
should be able to scroll content where it is, and not have to scroll an entire page to reveal something in only
one area of the screen. You should minimize scrolling when it may cause poor UX scenarios. This is especially
the case in tablet-based applications which have a larger UI than phone-based applications.

Luckily, this is also really easy. I personally prefer the open source iScroll JavaScript library from cubiq.org.
iScroll works really well on iOS, Android and BlackBerry – I haven’t tested other platforms, but you can test
them out yourself: http://code.google.com/p/iscroll-js/source/browse/#hg%2Fexamples%2Fcarousel

Remove “click” Delays

“Click” events on HTML elements on mobile devices generally have a delay that is caused by the operating
system logic used to capture gestural input based on touch events. Depending on the device, this could
be 300-500 MS. While this doesn’t sound like much, it is very noticeable. The workaround is to use touch
events instead of mouse events: touchStart, touchMove, touchEnd. You can learn more about touch events
from html5rocks.com. There’s also a great script from cubiq that adds touch events for you to optimize the
experience for onClick event handlers on iOS devices.

Add To Home Screen

If you want your web app to fee like a real app and take up the full screen without using PhoneGap as an
application container, then you can always add it to the device’s home screen. Although this can only be
done manually through the mobile browser, there are a few open source scripts to guide the user through

this processs: cubiq.org or mobile-bookmark-bubble should get you started.

Use Hardware Acceleration

Animations will generally be smoother and faster if your content is hardware accelerated (and the device
supports hardware acceleration). You can make html elements hardware accelerated just by adding the
translate3d(x,y,z) css style to the element (be sure to set all three x, y, and z attributes otherwise hardware
acceleration may not be applied. If you don’t want any translation changes, you can use the translate3d CSS
rule with all zero values: translate3d(0,0,0).

transform: translate3d(0,0,0);

-webkit-transform: translate3d(0,0,0);

In your development/testing, you can even visualize which content is hardware accelerated in both desktop

and mobile Safari using the technique shown at http://mir.aculo.us/.

Make Your Apps Fast

Last, but certainly not least, make your apps fast. Follow best practices, and be efficient in code execution
and the loading of assets (both local and remote). Here are a few links to get you going in the right direction:

•	 http://mir.aculo.us/2010/06/04/making-an-ipad-html5-app-making-it-really-fast/
•	 http://www.html5rocks.com/en/tutorials/speed/html5/
•	 http://www.html5rocks.com/en/features/performance
•	 http://www.html5rocks.com/en/tutorials/canvas/performance/

I hope these get you moving in the right direction! If you have read this, and aren’t sure what it all means,
check out the Adobe Developer Connection to ramp up on HTML5, or theexpressiveweb.com to see what
HTML5 & CSS3 can do.

appliness(DON’T WORRY, BE APPLI

What is PhoneGap?
by Greg Wilson

Last year, in October, Adobe acquired Nitobi, the makers of PhoneGap. After
this announcement, I had multiple conversations with conference attendees

and found that several of them really had no idea what PhoneGap is. Some
thought it was a JavaScript framework that competes with JQuery or Sencha;
others thought it was something that converted JavaScript to native Objective
C or Java. Both of these are incorrect – not even close… so I decided to write a

quick article to explain.

ABOUT THIS ARTICLE

I’ve been lucky enough to have been in-
volved in all sorts of technologies. For the
past 6 years I’ve been with Adobe speaking
at events, blogging, building tools, helping
developers and learning something new ev-
ery single day. I also manage the Adobe En-
terprise Platform Evangelist Team.

http://gregsramblings.com/
 @gregsramblings

PhoneGap website and documentation
http://phonegap.com

Build in the cloud
http://build.phonegap.com

Video: Getting started with PhoneGap
http://tv.adobe.com/watch/adc-presents-phonegap/getting-start-
ed-with-phonegap/

ONLINE RESOURCES

PhoneGap and Android

Since I’m more familiar with Android than iOS, I’ll explain how it works for Android.

First, you create a new Android project in Eclipse (requires the Android SDK), add the phonegap.jar file
to the lib folder, and make a few tweaks to the manifest and other files (details here). The main java file is
modified as follows:

package com.gregwilson.gregpg1;

import com.phonegap.*;
import android.os.Bundle;

public class GregPG1Activity extends DroidGap {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 super.loadUrl(“file:///android_asset/www/index.html”);
 }
}

Notice the line in red. We’ve created a native Android app, and this native app loads android_assets/www/
index.html in WebView when launched. WebView is a class in the Android SDK that allows you to display
web pages as a part of your layout. It’s like having a web browser inside of your app and uses the device’s
existing implementation of WebKit. In iOS, it’s UIWebView. Other mobile OSes use similar techniques.

Below is my project in both Eclipse (Android) and Xcode (iOS). The web application is in the www folder
indicated by the red arrows.

Now you simply compile, build, deploy like any other Android project.

Basically, PhoneGap apps are HTML/JS/CSS apps that run within the WebView (or equiv) component. If
you are like me, at this point you are thinking, “Uh – that’s lame – is that it? I can do that today without any
additional software”.

But there’s more… PhoneGap extends the WebView class to give it hooks back to the device itself and
exposed them as JavaScript. Remember the jar file that is in the project? The project also includes a
phonegap.js file, which exposes many new functions that make this much more than simply displaying a
web page in a WebView component.

Check out the code below for accessing the device GPS (copied from one of the many great examples
from http://docs.phonegap.com). If you create an PhoneGap project and copy the code below to your
index.html file, you can see it run.

<!DOCTYPE html>
<html>
 <head>
 <title>Device Properties Example</title>

 <script type=”text/javascript” charset=”utf-8” src=”phonegap.js”></script>
 <script type=”text/javascript” charset=”utf-8”>

 // Wait for PhoneGap to load
 //
 document.addEventListener(“deviceready”, onDeviceReady, false);

 // PhoneGap is ready
 //
 function onDeviceReady() {
 navigator.geolocation.getCurrentPosition(onSuccess, onError);
 }

 // onSuccess Geolocation
 //
 function onSuccess(position) {
 var element = document.getElementById(‘geolocation’);
 element.innerHTML = ‘Latitude: ‘+ position.coords.latitude+ ‘
’ +
 ‘Longitude: ‘+ position.coords.longitude+ ‘
’ +
 ‘Altitude: ‘+ position.coords.altitude+ ‘
’ +
 ‘Accuracy: ‘+ position.coords.accuracy+ ‘
’ +
 ‘Altitude Accuracy:‘+position.coords.altitudeAccuracy+‘
’ +
 ‘Heading: ‘+ position.coords.heading+ ‘
’ +
 ‘Speed: ‘+ position.coords.speed+ ‘
’ +
 ‘Timestamp: ‘+ new Date(position.timestamp)+ ‘
’;
 }

 // onError Callback receives a PositionError object
 //
 function onError(error) {
 alert(‘code: ‘ + error.code + ‘\n’ +
 ‘message: ‘ + error.message + ‘\n’);
 }

 </script>
 </head>
 <body>
 <p id=”geolocation”>Finding geolocation...</p>
 </body>
</html>

Now your “web app” has access to Accelerometer, Camera, Compass, Contacts, and many other device
capabilities.

Some observations

•	 Since the app itself is super small, it loads crazy fast – less than one second on my HTC Inspire and iPad
2. You probably won’t even need a splash screen.

•	 The framework is simple and lightweight, so the resulting app has a very small memory footprint. This
allows apps to work on older and slower hardware like the original iPhone and older BlackBerry phones.

•	 The PhoneGap docs and examples are fantastic – clear and concise. I was able to copy/paste ev-
ery sample and see the results. (one note — the phonegap-1.1.0.js for Android is different than the
phonegap-1.1.0.js for iOS – I initially made the mistake of assuming they were identical and killed a few
hours trying to figure out why certain samples wouldn’t run)

•	 The platform support is broad. As of this article, PhoneGap supports iOS (iPhone, iPhone 3G/3Gs/4/4S,
iPad 1/2, Android (all versions), BlackBerry OS 4.6 and newer, WebOS, Symbian, Bada and they have
recently started to support Windows Mobile. See http://www.phonegap.com/about/features for a list
of what’s supported on each.

•	 Your HTML/JS/CSS run in the native WebView so you are free to use any frameworks you desire such
as JQuery Mobile, Sencha, whatever. PhoneGap gives you a WebView/UIWebView with hooks to the
device. The rest is up to you.

•	 PhoneGap is free, open-source and is an Apache project (Cordova)
•	 PhoneGap is extendable via a plugin model giving you a bridge between native code capabilities and

JavaScript.
•	 There is already a great collection of community-created plugins at https://github.com/phonegap/

phonegap-plugins.
•	 I haven’t figured out a good way to debug these types of apps yet. I suspect that this will be a bit of a

challenge. There is a console.log() function that will send messages back to your Eclipse console. When
the camera sample wasn’t working, I really had no clues as to why. It’s likely that I’m missing something,
so it’s too early to judge.

PhoneGap Build

As you start building mobile apps in any technology, you soon discover that each platform has its own
deployment steps and tooling requirments (some of which are amazingly tedious and error-prone). For
example, to build a native iOS app, you use Xcode, which only runs on Mac OS X. To build for BlackBerry
phones, you have to use their tooling that only runs on Windows. To build for both platforms, you’ll need
two machines (or use virtualization).

This is why http://build.phonegap.com was created. The service allows you to upload your www project
folder (or give it a GitHub URL) and it will package your app for the supported platforms. The specific steps
are documented at https://build.phonegap.com/docs/start.

NOTE: Adobe has stated that this service will continue as part of the recently announced “Adobe Creative
Cloud” but no details have been provided nor has any pricing been announced.

What’s next?

If you’re intrigued, I encourage you to go to http://phonegap.com, where you’ll find everything you need
to build an app. I was able to get a Hello World app running on both Android and iOS in under 30 minutes
(not counting the downloading of Xcode). The “Getting Started” section is excellent.

appliness(VIDEO TUTORIAL

HTML5 for App Developers: PhpStorm/WebStorm
by Piotr Walczyszyn

ABOUT THIS ARTICLE

In the video above you will find a quick review of
PhpStorm/WebStorm IDEs. This is one of those
tools that I will stick with at least for now. It has
really great debugging support. Also because
it is built on top of IntelliJ IDEA platform it has
great code completion, rich set of refactoring
features, and many others.

http://riaspace.net/
 @pwalczyszyn

Official page of WebStorm
http://www.jetbrains.com/webstorm/

Jetbrains blog
http://blog.jetbrains.com/

HTML5 development
http://www.adobe.com/devnet/html5.html

ONLINE RESOURCES

appliness(BLEEDING EDGE

Bleeding Edge HTML5,
WebRTC & Device Access
by Andrew Trice

The world is changing… and oh my, it is changing fast. In the not-too-distant
future, many capabilities that were exclusive to plugin-based content will be
accessible to the HTML/JavaScript world without any plugin dependencies.
This includes access to media devices (microphone and camera), as well as real

time communications. You might be reading this thinking “no way, that is still years off”, but it’s not.

Just last night I was looking at the new webRTC capabilities that were introduced in the Google Chrome
Canary build in January, and I was experimenting with the new getUserMedia API. WebRTC is an
open source realtime communications API that was recently included in Chrome (Canary, the latest dev
build), the latest version of Opera, and soon FireFox (if not already), and is built on top of the getUser-
Media APIs. Device access & user media APIs aren’t commonly available in most users’ browsers yet, but
you can be sure that they will be commonplace in the not-so-distant future.

Below you’ll see a screenshot of a simple example demonstrating camera access.

The beauty of this example is that the entire experience is delivered in a whopping total of 17 lines of
code. It uses the webkitGetUserMedia API to grab a media stream from the local webcam and dis-
play it within a HTML5 <video> element.

<html>
 <script>
 function load() {
 var video = document.getElementById(‘myVideo’);
 if (navigator.webkitGetUserMedia) {
 navigator.webkitGetUserMedia(‘video’,
 function(stream) { video.src = webkitURL.createObjectURL(stream); },
 function(error) { alert(‘ERROR: ‘ + error.toString()); });
 } else {
 alert(‘webkitGetUserMedia not supported’);
 }
 }
 </script>
 <body onload=”load()”>
 <video autoplay=”autoplay” id=”myVideo” />
 </body>
</html>

While this example is really basic, it is a foundational building block for more complicated operations,
including realtime video enhancement and streaming/communications. Check out this more advanced
example from http://neave.com/webcam/html5/, which applies effects to the camera stream in real time:

You can read more about WebRTC, get demos, and get sample code at http://www.webrtc.org

If you want to read more about some of the new “Bleeding Edge” features coming to the web, check
out this slide deck by Google’s Paul Kinlan. You can also read more about the getUserMedia API from
Opera’s developer site.

ABOUT THIS ARTICLE

Andy Trice is a Technical Evangelist for Adobe
Systems. Andrew brings to the table more than
a decade of experience designing, implement-
ing, and delivering rich applications for the web,
desktop, and mobile devices. He is an expe-
rienced architect, team leader, accomplished
speaker, and published author, specializing in
object oriented principles, mobile development
and data visualization.
http://tricedesigns.com/

 @andytrice

More about WebRTC
http://www.webrtc.org

About the getUserMedia API
http://dev.opera.com/

Advanced example
http://neave.com/webcam/html5/

ONLINE RESOURCES

We want to showcase in this section the best mobile applications built with web standards. If you
want to showcase your application, contact us by email - contact@appliness.net. This time, we are

promoting three mobile applications available on iOS and Android devices.

JustOneMore
by Ribot Limited

Designed to help you discover inspiring video
content, Just One More provides a simple,
addictive interface that brings the very best
of Vimeo to the iPad/iPhone. Launched on
the App Store in February and built using
web-only technologies this free app shows
that you really can make immersive, content-
rich mobile apps using the latest in HTML5,
CSS3, and JavaScript. This application was

built with Sencha Touch and is available as a native app thanks to PhoneGap. You can
swipe through the latest videos via a smooth user experience on iPad devices. A must for
video fans and especially for Vimeo addicts.

appliness(IS A WARM GUN

Piotr Christophe Michaël

Holly Greg Michaël

Greg Andy Michaël

Wikipedia
by Wikimedia Foundation

Wikipedia, of course, is the free, online encyclopedia containing
more than 20 million articles in 280 languages, and is the most
comprehensive and widely used reference work humans have ever
compiled.

The official Wikipedia app for Android was developed with web
standards (HTML, CSS, and JavaScript) but runs as a native app
thanks to PhoneGap. The developers used some of the new,
advanced APIs provided by PhoneGap to implement features such
as saving articles to read offline, searching articles on topics that
are nearby with geolocation, sharing articles using the native Share
function of Android, and reading articles in different languages.

Census brower
by Andy Trice

The US Census Browser is an open source
application for browsing data from the 2010
US Census. The app was written entirely
using HTML and JavaScript, even the
charting and data visualization components.
The data visualization is implemented
completely on the client side, using the
Highcharts JavaScript library, which renders
vector graphics based upon the data that is

passed into it. The fluid scrolling and swiping between views is implemented using the
iScroll JavaScript library. It’s built as a native app on several platforms using PhoneGap.
The source code of the app is available on Andy’s blog (tricedesigns.com).

JavaScript is a language we love despite it giving us so much to hate. This
is a collection of those very special irregularities, inconsistencies and just
plain painfully unintuitive moments for the language of the web. Brian Le-
Roux, PhoneGap bla bla bla, is listing on his blog WTFSJ.com funny facts
about this language.

“All your commas are belong to
Array”

This installment of wtfjs has to do with the Abstract Equality Comparison Algorithm (as most do), Array’s construc-
tor, and expressions.

Let’s take the following example:

WTF? Why does this work?

Firstly, the == causes type coersion (pretty common). From the ECMAScript Specification, 5th edition (final draft),
11.9.3 The Abstract Equality Comparison Algorithm:

The comparison x == y, where x and y are values produces true or false. Such a comparison is performed as follows:

- If Type(x) is either String or Number and Type(y) is Object, return the result of the comparison x == ToPrimitive(y).
- If Type(x) is Object and Type(y) is either String or Number, return the result of the comparison ToPrimitive(x) == y.

So both uses of Array are run through ToPrimitive. But what does ToPrimitive do, exactly? Well, according to another
part of the Final final final final draft Standard ECMA-262 5th edition (the document seriously has this title...), 9.1.
ToPrimitive:

Object Return a default value for the Object. The default value of an object is retrieved by calling the [[Default-
Value]] internal method of the object, passing the optional hint PreferredType. The behavior of the [[DefaultValue]]
internal method is defined by this specification for all native ECMAScript objects in 8.12.8.

So we’re hinting to the [[DefaultValue]] method within Array with the type of String,
so according (again) to the spec, 8.12.8 [[DefaultValue]] (hint):

Let toString be the results of calling the [[Get]] internal method of object O with
argument “toString”.

Unless of course, IsCallable(toString) (i.e. the object has a .toString method on it’s
prototype).

If IsCallable(toString) is true, then, a. Let str be the results of calling the [[Call]] internal metho of toString with O
as the this value and an empty argument list.

And according to 15.4.4.2 Array.prototype.toString ():

When the toString method is called, the following steps are taken:

Let array be the result of calling ToObject on the this value.
Let func be the result of calling the [[Get]] internal method of array with argument “join”.

Oh, but we’re not done yet!

Stay with me - we’re type-coersing to a string, and Array.prototype.toString calls Array.prototype.join with no argu-
ments, so we’re joining all the internal members of the array with the default separator is the single-character String
“,” (again, according to the spec). When an Array calls join on itself, it’s going from 1 .. len (all it’s members) and call-
ing ToString on these members and concatenating them together. Essentially doing this:

Array.prototype.join = function (separator) {
 var result = “”;
 if (“undefined” === typeof separator) {
 separator = “,”;
 }
 for (var k = 0, len = this.length; k < len; ++k && result += separa-
tor) {
 var isToS = this[k] !== null && this[k] !== undefined && “func-
tion” === typeof this[k].toString
 result += isToS ? this[k].toString() : String(this[k]);
 }
 return result;
};

So in the end, we end up with weird stuff like this actually working, as [], null, and undefined all result in “” when their
respective ToPrimitive methods ask for [[DefaultValue]] with String as the type hint.

Another similar WTF on the same topic:

“,,,” == new Array(4); // true

This is similar, but not quite the same. When you call Array’s constructor, if there are multiple arguments, they’re in-
tepretted as being members of the Array. If you’ve only put 1 Integer (n) as the argument, an Array object is initiatil-
ized with (n) undefined items. Again, from the spec 15.4.2.2 new Array (len):

If the argument len is a Number and ToUint32(len) is equal to len, then the length property of the newly con-
structed object is set to ToUint32(len).

So essentially end up with

[undefined,undefined,undefined,undefined].join(),

Which yields something like:

“” + String(undefined) + “,” + String(undefined) + “,” + String(undefined)
+ “,” + String(undefined)

Which ends up being “,,,” (which evaluates to true, as it matches).

Lastly, adding just one more level of WTF to this post, you can also accidentally (or intetionally?) add an expression
within Array’s constructor function (and you can also omit new, as the spec also says: “When Array is called as a func-
tion rather than as a constructor, it creates and initialises a new Array object.”).

So we can finally end up with the weirdest rendition of this WTF as so:

“,,,” == Array((null,’cool’,false,NaN,4)); // true

If this doesn’t make you WTF, I’m not sure what will.

“JavaScript is a
language we love
despite it giving us
so much to hate.”

new Array([],null,undefined,null) == “,,,”; // true

ABOUT THIS ARTICLE

Brian Leroux is a free/open source soft-
ware developer at Adobe, formerly of Nitobi,
working on PhoneGap, XUI, Lawnchair and
WTFJS. Suffice to say, Brian believes that the
future of the Web is mobile and will depend
on web standards, open source and hackers.
Check his crazy blog about JS:
http://wtfjs.com/

 @brianleroux

Dan Beam has worked as a front-end en-
gineer for Yahoo! on the Yahoo! Web player
and Yahoo! News. He also worked as a Soft-
ware Engineer for the infamous Ticketmaster
on the London 2012 Olympics.
Check his website:
http://danbeam.org/

 @danbeam

appliness(WTFJS?!*%

Meet Maximiliano Firtman. With 17 years in the field, 8 books and 2,922 pages written, 112 talks, 252
trainings, 158 posts and articles - and counting...it’s no wonder we call him the Godfather of Appliness

magazine. In this interview, Mr. Firtman has given us extensive insight into the world of mobile web
development, HTML5 and related technologies.

MAXIMILIANO FIRTMAN

“UI design matters in my
coffeemaker, I believe it’s
important everywhere.”

appliness(INTERVIEW

Appliness: Hi, it’s a great pleasure to have you
interviewed for the first issue of Appliness. You will
be the official godfather of this magazine, “el Pa-
drino”. Can you introduce yourself to our readers?
Maximiliano: It’s an honor and a responsibility to be
the first inter-
view. I want
to define
myself as a
mobile+web
d e v e l o p e r.
I’m not just a
mobile web
d e v e l o p e r.
I’ve started
doing web development in early 1996 (yes, there was
a web 16 years ago) and then I’ve added web and na-
tive mobile development in 2001 (again? Yes, there
was a mobile space 11 years ago).

My first 15 years in the area gave me experience in
HTML, CSS, JavaScript, PHP, ASP, ASP.NET, C#, Vi-
sual Basic, Java, Android, Objective-C, ActionScript
(for Flex), Java ME, Qt and probably something else
I forgot about. The last year I was more focused on
HTML5 and mobile web development.

I’ve written some books,
including “Program-
ming the Mobile Web”
and “jQuery Mobile
Up and Running” both
from O’Reilly Media. I
love to dig into mobile
browsers, so right now I
have 35 devices includ-
ing tablets, e-readers
and phones. They allow
me to test and re-test
every HTML5 feature
and post my results on
mobilehtml5.org and
my blog. I’ve also cre-

ated some tools, such as iWebInspector, a free web
debugger for iOS simulator.

In the meantime, I travel a lot doing conferences,
workshops and trainings around the world.

Appliness: Can you highlight a favorite project
you have worked on? How was this satisfying?

Maximiliano: I like writing, so the book “Program-
ming the Mobile Web”, 512 pages of full research
on everything you need to know about mobile web
is a project I loved to do. It was translated to Italian,

French and Turkish and I’ve received messages from
all over the world. It’s even being used as the official
material in some universities.

I can also mention iWebInspector. It is a tool that took
me maybe 5 hours of one Saturday (my apologies
again to my wife, Ani) and I’ve received tweets from
web designers and developers literally saying I’ve
saved their lives. This kind of little help that you can
bring for free to the community is really satisfying.

Appliness: A lot of classic web developers are
tempted to extend their skills to coding mobile apps.
Do you think that HTML5 can easily answer their
needs in terms of mobile application development?
(you can include some framework recommendations
to get started with mobile apps development)
Maximiliano: If
you are a web de-
veloper, then you
will always be more
confortable with
Dreamweaver and
Firebug than work-
ing with Eclipse
or Xcode. I have
good experience in both worlds. The reality is that
you will hate native tools if you are a web devel-
oper, so HTML5 seems to be an answer. The prob-
lem is for each question HTML5 answers; it leads to
ten new questions. HTML5, specifically in the mo-
bile space, is not something concrete, with known
limits. Classic web developers need to be prepared
for a new way of thinking. Even platforms such as
PhoneGap seem so easy to use… until you get into
it and try to make it work. I’m not saying it’s difficult
or impossible; I’m saying you need to understand,
learn and embrace new practices and new ideas.

Appliness: When should a developer target a web
application (in the browser), a hybrid app or a na-
tive application?
Maximiliano: I’m sorry to give the worst answer
that someone can receive: it depends on each proj-
ect. Every solution has pros and cons. The goal is to
understand all of them and make the best decision on
every project. If you want to be in the stores, then my
first answer is: “if you can do it with a HTML5-hybrid
solution, then do it”.

If you have a website, then you must have a mobile
version and, maybe, an app. I hate when I enter a
desktop website on my mobile. It’s a wrong decision
from my point of view. It doesn’t matter if my brows-
er can render a big page on my small screen.

“The problem is,
for each question
HTML5 answers; it
leads to 10 new ques-

tions.”

As a mobile user, I want something fast, easy to read,
easy to use and if you are delivering a desktop site
you are failing.

Appliness: What solutions would you recommend
to develop a multi-platform
hybrid app ?
Maximiliano: I personally
don’t like closed solutions be-
cause I’m not sure about their
future support. There are lots
of multi-platform hybrid solu-
tions out there and I believe
every day ten new solutions
are born. I like control; so usu-
ally in my projects I create a full
hybrid environment on my own.
If I need some other APIs, then PhoneGap is my rec-
ommendation. Usually my multi-platform applications
include a data layer, a logic layer and a UI layer shared
between every platform. Then I have some kind of a
“tweak layer” per platform that adapts the UI or be-
havior to specific platforms, such as contextual menus
on Android or the back button support on Android
and Windows Phone.

I’ve done at least 15 projects in the
last year using HTML5 and hybrid
solutions for multiple platforms,
including iOS, Android, Black-
Berry, Nokia and Windows Phone.

Appliness: What are the limita-
tions and the challenges of multi-platform mobile
app development?
Maximiliano: One of the most important challenges
is debugging on every platform. Even if you do not
have 35 devices like me, debugging is painful. Not
everything works exactly the same on every platform
and finding bugs is a real problem. The other challenge
is getting the best UI experience for each platform,
and for each
screen size
and resolution
on the same
p l a t f o r m .
Pe r fo rmance
on Android –
thanks Chrome
for saving our
future – and HTML5 API differences complete the
limitation list.

Appliness: Do you think that hybrid applications
are a temporary solution? (one day, mobile brows-
ers may have all the native APIs… but when?)
Maximiliano: Very good question. If you are us-
ing a hybrid because of device APIs, then the answer
should be yes. New APIs are appearing in the brows-
er every day. I’m sure we are going to see web-based
APIs augmented as a reality this year for example.
However, the native side is not only about device API.
It’s also about discoverability. Right now – we can like
it or not, we can discuss this apart – most users use
the store as the place to find apps, meaning “things
to do with your phone”. And the payment process is
other problem.

If this idea stays, then we will still need stores and
we will still need a way to package our app to be
distributed. There are some initiatives to standardize
this process for the future, such as the Native Web
group in the W3C.

If we solve the discoverability problem, we go forward
with APIs and with offline package installation of our

webapps, then hybrids are a temporary
solution. The major problem I see
is how all the big platforms are
going to embrace one standard.
I can’t see a future where Apple,
Android, Microsoft and BlackBerry
are all using the same package
standard and you can share your
apps easily. I’m not seeing that. Every

try failed in the past – such as the WAC standard.

Appliness: Which actors of the IT industry are
the most active to enable first-class mobile web
developments?
Maximiliano: Google apps and Facebook. Apple
has an important role too in enabling the first good
web platform to run on, but I don’t see Apple using it
for their developments.

Appliness: What is missing today? (a tool? a
specific library? some APIs? design stuff? coding
experience?)
Maximiliano: We really need remote debugging
tools on every platform. We also need better packag-
ing tools: you need to see the face of a web designer
trying to deal with Eclipse, Android Developer Tools
and XML files to compile his hybrid HTML5 ‘hello
world’.

In terms of API, we need: Full Screen, Shortcut instal-
lation, Orientation Lock, Background Notifications,
Web Intents and integration with Push technologies.

“Even if you do not
have 35 devices like
me, debugging is

painful.”

Appliness: What programs or tools do you use to
build mobile web applications?
Maximiliano: If I’m working with native, then it’s
between Eclipse, NetBeans, Xcode and Visual Studio
(yes, all of them installed on the same machine). If I’m
working with a hybrid, I use Dreamweaver, lots of sim-
ulators and emulators, iWebInspector, Weinre and real
devices. Usually I also use Apache to deliver web files in
development mode, so I can easily change and refresh
the app on real devices connected to my LAN to avoid
recompilation and reinstallation on every CSS change.

Appliness: Do you think UI design matters more
with mobile than with desktop?
Maximiliano: UI design matters in my cof-
fee maker. I believe it’s important everywhere.
On mobile is different. It’s not more important,
it’s just different and you need to understand it.

Appliness: Do you think good UI designers are
hard to find?
Maximiliano: Specialized in mobile, yes. They are
hard to find.

Appliness: Do you approach a tablet project differ-
ently than a mobile phone project? What if it’s both?

Maximiliano: A tablet project is more mobile than
desktop. Why? Because we use the same operating
systems, the same HTML5 engines, the same distri-
bution channels and the same pointer: our fingers.
That’s why a tablet project is treated as a mobile one
to me.

Appliness: Do you prefer to work alone or on
a team? What would be your recommendations
to build a mobile app with other developers?

Maximiliano: This is personal. I
prefer to work alone, but I know
that’s a failure in my motherboard. I
don’t think teams are bad. My rec-
ommendation is to keep the team
small. Mobile projects are small. If
you have a big project for mobile,
then think it again. Done? Think it
one more time. Unless you are cre-
ating the whole operating system, a mobile project
must be small.

Appliness: Your books are a great source of knowl-
edge for thousands of developers. In your case,
what industry sites or blogs do you read regularly?
Maximiliano: Two years ago I made a decision. I
can only maintain my reading in one place. Therefore,
I’ve replaced my feed reading with Twitter. And today
Twitter is my source of knowledge. That means that
you need to choose carefully who you follow.

I trust whom I follow so my readings are basically what
the network I’ve created recommends from plenty of
sites and blogs.

For my book and my blog… I’m still waiting to
find a source. Usually, I have no choice than dig
in to the problem myself, test, test and retest.

Appliness: Do you have some mobile applications
in mind that you consider as references?
Maximiliano: Not really. In terms of breaking the
rules of mobile web, I like the Gmail webapp. They
are always trying to push the boundaries and we have
a couple of techniques that were created by them,
such as some performance hacks. The Financial Times
webapp for iPad (app.ft.com) is a really good example

of the power
of HTML5
to replace a
native app.

Appl iness :
Before start-
ing a new web
a p p l i c a t i o n
development

and writing your first line of code, what is your
methodology? How do you get inspired? Do you
prototype your ideas?
Maximiliano: I don’t prototype my ideas. Wait… my
mistake; I do prototype, in my head. Usually, I think
on a project and I prototype it on my head. When
I write my first line of code, I know what I want to
do and how. My first line of code is usually a frame-
work. I don’t start with the UI. I start with the data
layer or a view framework and after I have the data,
and a basic navigation framework, I start to add the

views. That’s not because I’m follow-
ing a rule or a methodology. That’s
because it’s the fastest way to get the
final product. It’s incredible how fast
you can finish your app when you need
only to plug some wires and every-
thing works smoothly after a couple
of hard code. I believe the experience

with lots of projects gives you this way of thinking.

Appliness: You have trained a lot of developers on
mobile development? Have you identified special
skills to be successful with mobile development?
What’s the most difficult concept to learn for a clas-
sic developer?
Maximiliano: The most difficult concept is to un-
derstand that your result will not be the same on
every device. Your design will not be the same; the
typography will not be the same; the API compat-

“In terms of breaking
the rules of mobile
web, I like the Gmail

webapp.”

ibility will not be the same. You need to understand
the idea of “the best experience for each platform”
and not “the same experience for each platform”.

If you understand Progressive Enhancement, or if you
understand the power of JavaScript and how to write
good-layered code, then you will be a good mobile
web developer.

Appliness: What are the top 3 pieces of advice
you always give to mobile developers?
Maximiliano: Don’t be fanatic. Be multi-platform. If
you like iOS, good for you… but don’t create an app
just for iOS (replace “iOS” with any other platform
name). People in the world don’t use the same device
and it will not change
in the future.

Deliver the best (not
the same) experi-
ence for each context.
What is context? The
platform, the user’s
network speed, if the
user is in roaming or
not and lots of other
attributes you can get.

Keep performance
at the top of
your priorities.
Performance is a key
issue on mobile applications. Understand how to hack
and feel the fastest application on earth.

Appliness: What can we wish you for 2012?
Maximiliano: A decent end of the world maybe?
Seriously, I wish the mobile platform creators would
embrace web developers, as we deserve. Today, we
are second-class citizens. There is no – or outdated –
information on HTML5 compatibility, best practices
or sample code on the web. A new version of the
browser appears and there is no “what’s new” infor-
mation for developers. I’m used to digging into the
DOM to see what I find. I usually discover good val-
ues: Accelerometer API in iOS 4.2, Full-screen API in
Chrome for Android, Notifications API on BlackBerry
PlayBook. None of these APIs were documented by
the vendors.

I wish also to have better testing tools so we don’t
need to have 35 devices. Ah! Wireless charging.
Please! I don’t have more plugs for my chargers.

Photographer: Frank Deras

appliness(INDUSTRY TRENDS

What exactly is Apache?
by Alan Greenblatt

Alan works at Adobe Systems, a company which recently donated PhoneGap
and Flex to the Apache Software Foundation. He explains in this article the
benefits of such an organization for an IT editor and for the community of de-
velopers.

I’ve been using Apache software in one form or another for about 15 years.
But it’s only recently, with the advent of Apache Flex that I’ve started to actually understand what Apache
is all about. I’m not referring to the Apache web server here, which in some circles is synonymous with
‘Apache’. I’m talking about the Apache Software Foundation (ASF), its history and how it works, as well
as the Apache-specific projects, and how those projects are developed and maintained.

If you’re completely new to Apache software and are wondering about the commercial viability of Apache
software, take a deep breath and digest this fact. As of March 2012, ap-
proximately 420 million websites use the Apache web server. That’s
approximately 65% of all websites. For such ubiquitous software, you’d
think there must have been a massive team of developers hard at work,
writing specifications, developing the software, testing and supporting
it. Yet, truth be told, on average there were no more than 15 developers
from different organizations collaborating on the Apache web server at
any given time

When I say they were collaborating on the software, that gets to the
root mission of the ASF. The ASF provides the legal, financial and
organizational support for a broad range of open source, or rather,
open development projects. The ASF only supports collaborative

projects that need an infrastructure for a community of developers. This is not a repository of one person
code dumps, or master’s thesis experiments. These are long-lived projects supported by a community of
developers.

Apache projects work because it’s all about the community. The actual code is important, but only
because it brings the community together. Even the best software, without a supportive community, will
actually be shunned by the ASF. If enough people care about that software and want to keep a community
thriving, well that’s a different story.

Joining that community is simple enough. All you have to do is subscribe and participate. Pick a proj-
ect you’re interested in, subscribe to the appropriate mailing lists to stay informed, and start participating
in whatever way you can, whenever you can. To get started, some people take a look at the issues list,
find a simple bug they can fix and provide a patch to the community. Simple enough. The more you get
involved, the more exposure and respect you’ll get in the community and more you’ll be able to influence
that community.

And that gets to one of the prevalent tenets of the ASF, the
notion of the meritocracy. This applies to Apache projects
and the people working on those projects (the community).
You might start out as a user who simply uses some piece of
Apache software. The success of that project, for whatever
reason, may motivate you or your employer enough that you
graduate to becoming a developer or contributor on that
project. You might fix bugs or write new features. It doesn’t
matter as long as you are part of the community. If you get
involved enough and show your commitment to the project,

the project’s management committee (PMC) can decide to promote you to committer so you can have
write access to the source control system to make direct changes to the code.

Projects are also promoted through a meritocracy. When projects are first proposed to and accepted by
the ASF, they are put in the incubation stage and are referred to as podlings. Each podling, with the help
and guidance of ASF mentors, needs to prove that they are and will be a successful meritocratic commu-
nity before the ASF promotes them to becoming a top level project, or TLP.

I recently read one of the status reports for the Apache Flex podling, where it listed the top four items to
resolve before graduation to TLP:
•	 Resolve trademark donation or licensing
•	 Complete code and bug database donation
•	 Make at least one release
•	 Add new committers

The first two are logistical matters I can understand. And of course the project needs to show they can
make a release. If they can’t do that, what’s the point? But it’s actually subtler than that. The Apache Flex
community needs to show that they can all come together and agree on a release. That’s a big step as a
community.

As for new committers, my first reaction was truly confusion. That should
be very easy I thought. I’m sure we can get a bunch of people from Ado-
be to sign up as committers to make this a success. But then I realized
that we’re talking new committers, not just new contributors. The Apache
Flex community needs to prove that they have new people coming in who
are contributing enough to the community that they should be promoted
to committer, and that the Apache Flex PMC is organized enough to vote
them in as committers. The Apache Flex community has to show that they
are and will be a successful meritocratic community.

Given that there have been over 2000 mails on the Apache Flex mailing list in the past month alone; I
think we’re off to a very successful start.

“The community
needs to show that
they can agree on a

release”.

“65% of all websites
use the Apache

Web server.”

ABOUT THIS ARTICLE

Alan Greenblatt brings 25 years of software
development and technical management ex-
pertise to his role as Flex Partner Solutions
Architect at Adobe. He has been building
and deploying large enterprise data integra-
tion applications using semantic web tech-
nologies on the backend and Adobe Flex on
the front end since Flex was first introduced,
and holds patents associated with that work.
http://blattchat.com/

 @agreenblatt

The Apache Software Foundation
http://www.apache.org/

The Apache Flex homepage
http://incubator.apache.org/flex/

Apache Cordova (PhoneGap)
http://incubator.apache.org/projects/callback.html

ONLINE RESOURCES

Fresh news about HTML and Javascript collected by Brian Rinaldi.

appliness(HELTER SKELTER NEWS

Leverage functional
constructs in JavaS-
cript libraries in Node.
js using CoffeeScript
via Andrew Glover

How to achieve
functional inheri-
tance through us-
ing mixins in JavaS-
cript.

Create content
areas within
an accordion
using CSS3.

Real-time editable
ByteBeat audio gener-
ator using HTML5 and
JavaScript
via Gregg Tavares

A great comparison
of the three leading
HTML5/JavaScript
drawing libraries

Building a mobile
application using
jQuery Mobile
via Mihai Corlan

3D rendered Tron disk
with a animated lights.
via Thibault Despoulain

Chai is a TDD/
BDD assertion li-
brary for JavaS-
cript

How to save images,
and other filetypes, us-
ing the browser’s lo-
calStorage API

appliness(HELTER SKELTER NEWS

Sam Saffron shows
how to stop paying
your “jQuery tax” by
loading the framework
in the footer.

A version of
Weinre port-
ed to Node.js

An interesting (and
slightly controver-
sial) comparison
of the Backbone.
js and Ember

Determining page vis-
ibility with JavaScript
using the Page Visibil-
ity API in HTML5

how to Transform
HTML using Java-
Script on the serv-
er using Node.JS

Google’s Dart pro-
gramming lan-
guage integrated
in Chromium

Geometry.js is a Java-
Script geometry class
for developing games

This is a nice over-
view of callback func-
tions in JavaScript by
Louis Lazaris.

Gordon Hempton’s
anatomy of a complex
Ember application.

appliness(PREVIEW

This is a PDF preview of Appliness, a
digital magazine for web application

developers.

Download Appliness on your iPad or
your Android tablet to enjoy the best
reading experience (interactive sam-

ples, links, videos...).

If you want to contribute to appliness
writing articles or showcasing your apps,
visit our website (www.appliness.com)

and contact us.

www.appliness.com

	01cover-max
	02edito
	03tutorial-wine-cellar-pt1
	04tutorial-jqmv2
	05tutorial-ray
	06tutorial-canvas-quirks
	07tutorial-mobiledevtips
	08tutorial-greg
	09videos_piotr-webstorm
	10bleeding-edge_webRTC-andy
	11showcase
	12wtfjs-brian
	13interview_maximiliano
	14trends-apache
	15news
	16Team

